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Abstract—Conversational recommendation systems (CRS) can actively discover users’ preferences and perform recommendations
during conversations. The majority of works on CRS tend to focus on a single conversation and dig it using knowledge graphs,
language models, etc. However, they often overlook the abundant and rich preference information that exists in the user’s historical
conversations. Meanwhile, end-to-end generation of recommendation results may lead to a decrease in recommendation quality. In this
work, we propose a personalized conversational recommendation system infused with historical interaction information. This framework
leverages users’ preferences extracted from their historical conversations and integrates them with the users’ preferences in current
conversations. We find that this contributes to higher accuracy in recommendations and fewer recommendation turns. Moreover, we
improve the interactive pattern between the recommendation module and the dialogue generation module by utilizing the slot filling
method. This enables the results inferred by the recommendation module to be integrated into the conversation naturally and accurately.
Our experiments on the benchmark dataset demonstrate that our model significantly outperforms the state-of-the-art methods in the
evaluation of recommendations and dialogue generation.
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1 INTRODUCTION

W ITH the increasing cost of e-commerce platforms,
conversational recommendation system (CRS) has

become a hotspot among researchers. Conversational
recommendation systems are designed to chat with
users and provide personalized recommendations (e.g.,
movies, restaurants, cosmetics and commodities) [1]. Dif-
ferent from traditional recommendation systems which
passively gather information from users, CRS uses nat-
ural language to interact with users to understand user
needs and provide suitable items to address current user
needs [2]. On the other hand, CRS is also a kind of task-
oriented dialogue generation system, and the purpose
is to use as few dialogue rounds as possible to help
users complete pre-determined tasks or actions [3]. Thus,
CRS is regarded as a combination of a recommendation
system and a dialogue system.

Traditional CRS consists of two parts: the recommen-
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dation module and the dialogue generation module.
The recommendation module needs to understand users’
preferences through multi-round dialogue context and
reason out suitable items. Due to the fact that expressions
provided by users often contain insufficient and implicit
information, external knowledge has been introduced
into the system. For example, existing studies [4]–[7]
utilize knowledge graphs and review information to
improve recommender components, providing precise
recommendations. On the other hand, the conversation
generation module is also an area for improvement to
enhance the performance of the system. Recent works
[8] applied Large-Scale Pre-trained Language Models
(PLMs) such as BERT [9], Dialog-GPT [10], and BART
[11], or presented new pre-trained models for CRSs to
generate fluent and diverse dialogue responses.

However, these existing studies on CRS suffer from
two major issues. First, previous CRSs require multiple
rounds of dialogue to collect sufficient entities mentioned
to search for relevant items for users. However, in mul-
tiple rounds of dialogue, users will inevitably become
bored with constantly receiving incorrect information
or frequently being asked questions. That is, although
users hope to use as few rounds as possible to get
a desirable recommendation, the system cannot make
inferences with insufficient information [3]. Practically
speaking, users who interact with the system multiple
times are more sensitive to the number of conversation
rounds, and these users constitute the main part of the
system’s user base. Ideally, a CRS should accumulate
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Fig. 1: An example of conversational recommendation
with historical interaction data. When using conversation
history information, the system can give recommenda-
tions without asking for further information.

users’ historical information on its recommendations to
reduce the rounds of dialogue when a user interacts
with the system for a second time. Secondly, recent CRSs
[4]–[6] employ a general encoder-decoder framework
and suffer from overemphasizing the information from
the current text. Due to the decoder usually receiving
features from words and items, it is prone to overfitting
on this information. In other words, if the format of
sentences is similar, the system tends to generate the
same answers and does not incorporate the results of
the recommendation module. This causes a loss of re-
sult transformation from the recommendation module to
the generation module. Finally, existing models rarely
consider the impact of user interest shifts on model
performance [12]. However, users’ focus is unpredictable
and difficult to model; they often open a new topic
during a dialogue process and require CRSs to give
recommendations that are irrelevant to the previous
information. Before the emergence of generation-based
CRS, traditional Question-based models [13], [14] strug-
gled to grasp this point. Their paradigm of ”system asks,
user answers” found it challenging to provide accurate
recommendations in response to shifts in user interests.

In this paper, we propose a Personalized Conversa-
tional recommendation system infused with Historical
Interaction information, i.e., PCHI. PCHI consists of two
major components: a history-enhanced recommender
and a transformer-based generator. The recommender
employs a KG-enhanced neural network for training, in-
corporating entity information extracted from the user’s
history of conversations. As shown in Fig. 1, the user’s
historical conversations can serve as an external knowl-
edge source to model the user’s preferences in collabo-

ration with the knowledge graph. Using the information
from the user’s historical conversations, the recommen-
dation module can capture the user’s interests in the
early stages of the conversation and provide accurate rec-
ommendations. The generator will generate a response
with item slot, through multi-head self-attention layers,
instead of combining context and recommendation data
to generate the full conversation. After training, the
item selected by the recommender will be filled into the
reserved slot to perform recommendation and response
generation. For example, If the system decide recom-
mend the movie ”Spider-Man”, then the dialogue mod-
ule’s output should be: “I recommend [item]”, where
the item will be filled in with the item deemed most
likely by the recommendation part during the module
combination, finally resulting in the complete output
of ”I recommend Spider-Man.” The results show that
our model can provide high-quality and fewer-rounds
performance compared to other models that introduce
external knowledge.

The contributions of this work are summarized as
follows:

1) We propose a method to combine the user’s
historical interaction information into the tra-
ditional conversational recommendation system,
which contributes to reducing the conversation
turns and achieving a higher level of recommen-
dation hits.

2) We propose a novel fusion method that can
smoothly and accurately incorporate recommen-
dation results into dialogue generation tasks. It can
improve the gap between recommendation and
generation results in existing models.

3) Experimental results on the standard dataset show
that the proposed method significantly outper-
forms state-of-the-art CRS methods in both recom-
mendation and generation. The qualitative results
also demonstrate that the proposed method can
handle user interest shifts and reduce the number
of recommendation turns.

2 RELATED WORK

In this section, we introduce the existing works on
conversational recommendation systems. Conversational
recommendation systems, as an extension of traditional
recommender systems, help address many potential lim-
itations. For example, in some situations, users’ current
needs are highly dependent on the context instead of
their past interactions, or users construct their prefer-
ences during the interaction with the system as they
realize the scope of the options. Generally speaking,
the idea behind such systems is that they support task-
oriented, multi-turn dialogues with their users. CRSs
can be divided into two categories [15]: Question-based
systems and Generation-based systems.
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2.1 Question-Based system
The question-based CRSs [16]–[18] provide recommenda-
tions through multi-round clarifying questions to users
and extracting preference information from users’ feed-
back. By narrowing down the possible item space by
asking item-related questions [19], the system can ulti-
mately provide an optimal set of items that fit users’
preferences. Although this question-based system can
achieve better performance in recommendation, the free-
dom and flexibility of dialogues are limited by passive
responses. Recent works employ reinforcement learning-
based approaches, bandit-based approaches, and graph-
based approaches [20]–[23]. Zhang et al. [18] design a
unified framework for conversational search and rec-
ommendation and propose an architecture called Multi-
Memory Network (MMM) to accomplish the framework.
Zou et al. [24] propose a model based on matrix fac-
torization and infer user preferences and beliefs over
items using Generalized Binary Search. Wong et al. [7]
construct a billion-scale conversation knowledge graph
in an e-commerce environment and fuse user-state and
dialogue-interaction representations for Click-Through
Rate predictions. Some studies [13], [14], [25] have also
noticed the influence of historical dialogues on dialogue
recommendation tasks, for example, Zhou et al. [26] pro-
pose adopting historical information and attribute-based
preferences into the pre-training process to enhance
information fusion between items and attribute-based
preferences. Different from Question-based works, our
model not only focuses on the accuracy of recommen-
dation items but also improves the generation module
to generate fluent and reliable responses for answering.
Furthermore, Zhou employs a negative sample generator
for constructive learning, which is not available in our
case. To reduce the number of interactions required
to find a suitable item, Li et al. [27] take a ranking
optimization approach based on latent linear critiquing
for multi-step conversational recommendation.

2.2 Generation-based system
Compared to the Question-based system, the Generation-
based system is a free-style and natural CRS, which
dynamically obtains user preferences through interactive
conversation with users. However, after acquiring the
ability for natural conversation, Generation-based sys-
tems tend to see a decrease in recommendation efficiency
due to their end-to-end generation characteristics. There-
fore, a good system should incorporate items into re-
sponses with natural and accurate languages. Some pre-
vious studies [28]–[31] introduce a pre-trained language
model and template based model on generation modules
e.g. BERT [9], GPT-2 [32]. Yang et al. [31] directly convert
the items to embeddings by PLM and incorporate the
item embedding and dialogue context to reduce the
complexity of the model. Meanwhile, some researchers
focus on the combination between the recommendation
module and generation module to get better performance

on the end-to-end results. Liang [33] propose a method
that generates a response template with slot tied target
items and context to incorporate recommendation and
generation. Zhang et al. [34] divide the recommenda-
tion process into three sub-goals: Question answering,
Chitchat about movie and Movie recommendation, and
propose a unified framework which predict the sub-
goals in dialogue context and generate dialog response
though a noisy knowledge filter. Zhu et al. [35] design a
retrieval-based knowledge-grounded multi-task learning
framework, where the final response are selected by the
predicted knowledge and context. On the other hand,
in order to understand user’s preferences and enhance
the quality of recommendation, systems introduce ex-
ternal knowledge bases e.g., knowledge graphs (KGs).
Zhou et al. [5] introduce knowledge graphs into the
CRS, which enhance the data representation by a word-
oriented KG and an entity-oriented KG. Recent works
have employed tree-structured reasoning [36], subgraph
construction [37], new knowledge graph [38], [39] and
review information [6] to enhance the performance of
KG in recommendation modules. To utilize multi-type
external data, Zhou et al. [40] design a coarse-to-fine
contrastive learning framework to improve various data
semantic fusion. However, previous work often over-
looked the fact that users’ historical interaction records
contain a wealth of information.

Our model is more similar to the Generation-based
system; however, previous studies rarely consider users’
historical interaction information in CRSs. They often
focus on extending external knowledge sources rather
than incorporating data from historical interaction se-
quences. Incorporating historical data into users’ prefer-
ence representation is an accessible and low-complexity
approach for the entire CRS. Our model utilizes users’
interaction sequences to improve the performance of
recommendations and usability in the final response.
Moreover, inspired by recent studies, we enhance the
fusion method between the recommendation process
and dialogue generation to achieve better end-to-end
recommendation results.

3 OUR MODEL

In this section, we present the PCHI. As shown as Figure
2 , our model consists of four components: 1) a per-
sonalization encoding module, 2) a dialogue generation
module, and 3) a recommendation module. We will
introduce the details of each component in the rest of
this section.

3.1 Preliminary
Generally, a t-turn conversation context is denoted as
C = (t1, t2, t3 . . . tn), where t represents the utterances
of the dialogue history given by the user and system.
At t-th turn, system should receive utterances given by
user with vocabulary V , and recommendation module
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will find the appropriate item it from the total item set I
based on the information in user utterances or decide
not to give the recommendation if the it is equal to
∅. After that, the generation module generates natural
language sentences st combined with proper item it
from recommendation module. When the recommenda-
tion module thinks there are no recommended items
to recommend, the generation module is likely to ask
questions or generate some chit-chat responses to further
explore the user’s interests.

3.2 Personalization Encoding Module
To improve the responsiveness and accuracy of the rec-
ommendation system, we employ the information from
users’ history dialogues. For a user who is interacting
with the system, we extract the user’s preferred items in
the historical conversations and obtain the user historical
preferences item set Ui = i1, i2, i3 . . . , in . We adopt
Item2Vec [41] to embed the user preferences information
in historical conversations to learn entity representations.
Specifically, for a given item set Ui , the objective function
is as following:

1

K

K∑
j=1

K∑
j ̸=i

logp (Ij |Ii), (1)

where K is the length of sequence Ui. p(Ij |Ii) is the
selection probability of an item j within a large set of
item candidates Ui, and p (Ij |Ii) is the softmax function:

p (Ij |Ii) =
exp(uT

i vj)∑
k exp

(
uT
i vk

) , (2)

where ui and vi are latent vectors that correspond to the
target and context representations for item in. Specifi-
cally, ui represents the representation of a certain item i
that we need, which is the target representation, while
vj represents the representation of an item that appears
in a user’s access records and has a similar number
of visits to item i, which we refer to as the context
representation. To avoid the computational complexity
of p (Ij |Ii), the softmax function is always replaced by
negative sampling:

p (Ij |Ii) = σ
(
uT
i vj

) N∏
k=1

σ
(
−uT

i vk
)
, (3)

where σ (x) = 1
exp(−x) , N is a parameter of the number

of negative examples for each positive sample.
Then, we train the Item2Vec using gradient descent,

and get the final representation for all the items. For
each dialogue, we can acquire the users’ historical prefer-
ence sequence with embedding items hu1, hu2, hu3 . . . hut,
where hut denotes the d-dimensions vectors of item it. To
integrate the information from one user, we stack these
vectors to get the representation vu = hu1, hu2, hu3 . . . hut.

It is not sufficient to rely solely on the user’s his-
torical preferences in the conversation recommendation
task; the information mentioned in the conversation is
also crucial. Inspired by previous work [4], [5], we also
employ the Knowledge Graph from DBpedia and Con-
ceptNet as external knowledge. To utilize the word in-
formation in context, we adopt the Graph Convolutional
Neural network (GCN) [42] to encode the ConceptNet
[43] KG. Due to the complex relationships in ConceptNet
do not significantly aid word embeddings [5], we only
utilized the node information from ConceptNet as input
for our GCN model. For each n layer of GCN, the
new d-dimensional node feature matrix hc

(n) ∈ RL×d is
calculated as follows:

hc
(n) = ReLU

(
D− 1

2AD− 1
2hc

n−1Wn
)
, (4)

where Wn is a weight matrix at the n-th layer, D− 1
2AD− 1

2

is the normalized symmetric adjacency matrix of graphs.
hc

n−1 represents the lower-order neighborhood informa-
tion. After the training, we can obtain the representation
nw for a word w. On the other hand, for mentioned en-
tities and related items in context, we extract them from
the dialogues and generate the entity subgraph. Then, we
adopt Relational Graph Convolutional Network (RGCN)
[44] to embed the relational information in DBpedia
[45] to learn relational representations. Specifically, the
representation of an entity e at n-th layer h

(n)
e ∈ Rk is

computed as follow:

h(n)
e = σ

∑
r∈R

∑
j∈Nr

i

1

ci,j
W (n−1)

r h
(n−1)
j +Wn

e h
(n−1)
e

 ,

(5)
where Nr

i denotes the neighbor set of entity e un-
der the relation R, Wn−1

r denotes a learnable relation-
specific transformation matrix for the embeddings from
the neighboring node at the (n − 1)-th layer. Wn

e is a
learnable matrix for transforming the representations of
entity e at n-th layer. ci,j is a normalization factor. The
representations construct a search space of recommended
candidates for item retrieval.

At this point, we obtain the users’ preference represen-
tation vu from historical interaction data, word-oriented
representation hc and item-oriented representation he.
To obtain the final user preference representation, we
extract the entity representations used in the context and
integrate them.

3.3 Recommendation Module
To integrate the external knowledge into dialogues, we
extract the related entities (i.e. items and words) se-
quence Eu = e1, e2, e3 . . . eu in dialogue context C. Look-
ing up the hidden representations of entities in Eu from
hc and he, we can get all entities’ hidden representation
Hc = he1, he2, he3. . .

Eu
e=1 and He = he1, he2, he3. . .

Eu
e=1in

the dialogue. Usually, a conversation is made up of a
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Fig. 2: The overall of proposed model, where context C and context H denote conversation context and history
context, respectively.

number of contextual words and related items. Some of
them are noise, which will affect the final performance.
Therefore, we utilize the attention mechanism [46] on H
to learn each entity’s importance comprehensively. The
distribution Me vectors is calculated as follows:

Me = aH (6)

a = softmax
(
ws2tanh

(
ws1H

T
))

(7)

where ws2 and ws1 are two learnable weight matrix, a is
importance vector for each entities. H is the contextual
word representations or item set representations.

After attention mechanism, we have word vector vc
, item vector ve, and users’ historical preference vector
vu. We use the gate mechanism to integrate preference
representation pu for the user u.

pu = ω1vc + ω2ve + ω3vu, (8)

ωi = softmax(wgi · vi), (9)

where wgi are learnable parameters, wi are the weights
of the word vectors, item vectors and user’s historical
preferences vectors, respectively. We employ the pu to
calculate the probability of the recommendation item for
the user u:

Prec = softmax
(
puH

⊤
i

)
, (10)

where Hi is the hidden representation of item i.

3.4 Dialogue Generation Module
To generate the response, we choose a transformer-based
model that has performed effectively on the dialogue
generation task. Inspired by previous works [5], [33],
we use the standard Transformer encoder architecture
and the KG-enhanced decoder. Then, we mask all the
items in the dialogue context with [ITEM] tokens, which
means that the decoder will generate a response with

words from the vocabulary and [ITEM] tokens instead
of a complete response. Specifically, in the encoder stage,
given the context C, we can calculate the embedding
representation Ec:

Ec = Transformer (C) , (11)

upon encoding the context utterance, we enhance the
KG-integrated decoder that is capable of generating
more comprehensive responses by leveraging informa-
tion from the KG, as well as combining user preference
hidden representations provided by the recommendation
module and item embeddings from the KG. Formally, we
define En

d as the embedding matrix output from decoder
n-th layer as follows:

An
0 = MHA

(
En−1

d , En−1
d , En−1

d

)
, (12)

An
1 = MHA (An

0 , Ec, Ec) , (13)

An
2 = MHA (An

1 , vc, vc) , (14)

An
3 = MHA (An

1 , ve, ve) , (15)

En
d = FFN (An

3 ) , (16)

where Ec is the output of encoder, vc and ve are words
vector and item vector generated by recommendation
module, respectively. MHA(Q,K, V ) defines the multi-
head attention function that takes a query matrix Q, a key
matrix K, and a value matrix V as input and outputs the
attentive value matrix:

MHA (Q,K, V ) = Concat (head1, . . . , headh)W
O, (17)

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
, (18)

then FNN(·) is a fully connected feed-forward network,
which consists of two linear transformations with a
ReLU activation.

FFN (x) = max (0, xW1 + b1)W2 + b2, (19)
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now we have the output from the decoder. In previous
work, this output was used directly to calculate the
probability of the sequence, in order to generate usable
sentences, which led to some problems. For instance, the
decoder might generate a sentence containing item tags,
but the recommender would not generate corresponding
items because it could not capture enough information
from the current context. To address this issue, we in-
troduce the user’s preference embeddings generated in
Section 3.1, which effectively combine information from
the generated response, dialogue context, and candidate
item set. Specifically, we take the output of the decoder,
and combine it with the user representation and item
embedding to compute the probability distribution using
an MLP layer:

Pgen = softmax(MLP ([Ed, pu, v
i
e]) (20)

where Pgen is the probability of next token in generation
sequence, MLP (·) means the multi-layer perception, En

d ,
pu and vie are decoder output, user preference representa-
tion and item embedding of the recommendation results,
respectively and concat(·) means the concatenation.

3.5 Training Objectives

To train these modules in an end-to-end fashion, we
need to combine two types of training losses. For the
recommendation module, we optimize the cross-entropy
loss as follows:

Lrec = − 1

M

M∑
i=1

log
(
P i
rec

)
, (21)

where M is number of ground truth recommendation
items in conversation C. Prirec means the probability of
the recommendation item i. For the generation module,
we also employ the cross-entropy loss to optimize the
module performance:

Lgen = − 1

N

N∑
i=1

log (Pgen (ti|t1, . . . , ti−1)) , (22)

where N is the number of turns in a conversation C,
ti is the t-th utterance of this conversation. Then we
integrate recommendation loss and generation loss with
a hyperparameter γ:

L = Lgen + γLrec (23)

4 EXPERIMENTAL
4.1 EXPERIMENTAL SETUP

In this section, we introduce the details of our experi-
ment, including the dataset, baseline methods, evalua-
tion metrics, and model implementation details.

4.1.1 Datasets
To evaluate the performance of our model, we utilize the
REDIAL dataset [47] as the conversational recommenda-
tion dataset. This dataset is the most commonly used
English dataset for conversational recommendation and
generation tasks. REDIAL employs Amazon Mechanical
Turk (AMT) to collect human conversations on movie
recommendations, allowing researchers to systematically
explore various model sub-components to address prob-
lems such as sentiment analysis and cold-start recom-
mendation generation. It comprises 10,006 conversations
focused on providing movie recommendations. After
processing, we divide the dataset into three subsets with
an 80:10:10 ratio for training, validation, and testing. As
our method requires the dataset to include user IDs,
currently only the Redial dataset meets our requirements.

4.1.2 Evaluation Metrics
Our goal is to recommend proper items to fulfill the
needs of users and generate fluent sentences to answer
their requests and chats. Therefore, we expect the results
of our model to generate understandable statements for
interaction with the user while recommending the correct
results. To evaluate this task, we divide it into two parts
for measuring, recommendation and generation parts.

For the recommendation task, we aim for the rec-
ommendation system’s results to closely match those
provided by human recommenders, which are more
humanized and suitable for conversation. To evalu-
ate the performance of our methods, we employ Re-
call@k (k=1,10,50), which indicates the percentage of
top k items proposed by the system that include the
ground truth item provided by human recommenders.
Although a conversation typically only contains one or
two items from recommendations, Recall@10 and Re-
call@50 demonstrate the effectiveness of the recommen-
dation module. Recall@k is calculated as follows:

Recall@k =
1

N

∑
i∈N

Si
rec ∩ Si

human

Si
human

, (24)

where N represents the number of items that need to
be recommended. Si

rec denotes the top-k recommended
items from the model, and Si

human signifies the ground
truth items recommended by human providers.

For the generation task, the goal of CRS is to seam-
lessly integrate appropriate items into the natural lan-
guage response. Therefore, we also check whether the
ground-truth item is included in the produced re-
sponse in the end-to-end model by adopting Recall@k
(k=1,10,50). Additionally, we use some metrics to evalu-
ate the language performance of the final response. Fol-
lowing previous works, Distinct (Dist) n-gram (n=2,3,4)
[48] can measure the diversity at the sentence level. These
metrics are calculated as follows:

Dist(N) =
Count(different N-gram)

Count(Total N-gram)
, (25)
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where Count(different N -gram) indicates the differ-
ent continuous sequences of words in the sentence.
Count(Total N -gram) refers to the total continuous se-
quences in the sentence.

TABLE 1
Results of Recommendations. Our method shows

statistically significant improvement compared to the
baseline (p < 0.05).

Methods Recall@1 Recall@10 Recall@50

TextCNN 0.013 0.068 0.189
ReDial 0.024 0.140 0.320
KBRD 0.032 0.150 0.336
KGSF 0.039 0.183 0.378

RevCore 0.061 0.236 0.454
CRFR 0.040 0.202 0.399
NTRD 0.031 0.186 0.397

C2-CRS 0.053 0.233 0.407
VRICR 0.057 0.251 0.416

PCHI(Ours) 0.717 0.792 0.822

TABLE 2
Experimental results on conversation task. Our method
shows statistically significant improvement compared

to the baseline(p < 0.05). We abbreviate Distinct-2,3,4 as
Dist-2,3,4.

Methods Dist-2 Dist-3 Dist-4

Redial 0.225 0.236 0.228
KBRD 0.264 0.368 0.423
KGSF 0.289 0.434 0.519
NTRD 0.578 0.821 1.005

RID 0.518 0.624 0.598
BART 0.376 0.490 0.435

C2-CRS 0.163 0.291 0.417
VRICR 0.271 0.514 0.699

PCHI(ours) 0.574 0.863 1.053

4.1.3 Baselines
To evaluate the performance of item recommendation
and response generation, we compare our model with
the following methods.

(1) Redial [47]: This model consists of a hierarchical
recurrent encoder following the HRED architecture [49]
and a switching decoder. (2) TextCNN [50]: This model
encodes utterances in the current session to learn user
preferences by CNN-based mode. (3) KBRD [4]: This
model has a knowledge-graph-enhanced recommenda-
tion architecture, which employs DBpedia to embed user
preferences. The transformer-based architecture consists
of the dialogue module, and KG information is presented

TABLE 3
Comparison results on End-to-End recommendation.

Methods Recall@1 Recall@10 Recall@50

KGSF 0.009 0.042 0.088
NTRD 0.018 0.125 0.316

RID 0.031 0.140 0.270
BART 0.017 0.071 0.138

GPT 3.5 0.034 0.172 -

PCHI(ours) 0.454 0.473 0.493

as word bias for generation tasks. (4) KGSF [5]: This
model utilizes two external knowledge graphs: a word-
oriented KG and an item-oriented KG to further enrich
the performance of the recommendation module. The
generation model integrates the two KGs into decoders
to obtain more detailed responses. (5) NTRD [33]: A
Transformer-based model that generates responses us-
ing templates and item-slots, which can be filled in
with the results from the recommendation module. (6)
RevCore [6]: A model that employs a review-enhanced
framework, using user’s review information to improve
the performance of both the recommender and dialogue
generation components. (7) CRFR [39]: A conversational
context-based reinforcement learning model with multi-
hop reasoning on KGs. It flexibly learns multiple reason-
ing fragments which are likely contained in the complete
paths of interests shifts. (8) RID: [51] A model combina-
tion the pre-trained language model (PLM) and an item-
oriented knowledge graph. (9) BART: [52] A Large lan-
guage model based on Transformer-based autoencoder.
(10) C2-CRS: [40] A model with coarse-to-fine contrastive
learning framework to improve data semantic fusion for
CRS. (11) VRICR: [53] A model enhances incomplete
KGs in CRSs by incorporating dialogue corpus and per-
forms dynamic knowledge reasoning based on dialogue
context.

4.1.4 Experimental Settings

Our model is implemented in Pytorch and trained on
a single NVIDIA 3080Ti 12G card. To facilitate faster
recommendations, we assume that the last recommended
item in each conversation is the item that the conver-
sation truly intends to recommend, and we retain it
during training. For the recommendation module, the
item embedding size is set to 128, and we use the
skip-gram algorithm to train Item2Vec with a negative
sampling number of 5. Gradient clipping is applied to
restrict gradients within the range [0, 0.1]. The batch
size is set to 64. We employ the Adam optimizer with
a learning rate of 5e-4. The weight γ is set to 5 when
calculating the total loss. The source code developed for
this study is available on GitHub
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4.2 Performance Comparison of CRS
In this section, we begin by summarizing the compari-
son results for recommendation and response generation
tasks separately. Then, we discuss whether our model
can achieve accurate and personalized recommendations
more quickly than other models.

4.2.1 Evaluation on Recommendation
Table 1 presents the results of the comparison experi-
ments on the recommendation module. Our model PCHI
outperforms the compared methods under all the metrics
on the Redial dataset. Specifically, for Recall@1 metric,
our method is 29.8 times larger than ReDial, 22.4 times
larger than KBRD, 18.3 times larger than KGSF, 11.75
times larger than RevCore, 17.92 times larger than CRFR
and 23.12 times larger than NTRD. For Recall@50 metric,
our method is 156% higher than ReDial, 144% higher
than KBRD, 117% higher than KGSF, 81% higher than
RevCore, 106% higher than CRFR and 107% higher than
NTRD. This indicates that our model can better capture
user’s preference information in the recommendation
module. Moreover, this demonstrates that historical user
interaction information can improve the accuracy of rec-
ommendations. On the other hand, We can observe that
models such as KGSF and RevCore, introduce external
information (e.g. KGs and user reviews) will perform
better on recommendations compared to the original
model (ReDial). It indicates that the external data can
assist the model in extracting the user preference features
during conversations, thus improving the recommen-
dation accuracy. From the results, we can see that the
recommendation performance of the model has been im-
proved very significantly after combining the user’s his-
torical conversation information and knowledge graphs.
We note that the biggest enhancement occurred in the
top-1 metric, which means that our model is able to
recommend results directly to the user, rather than letting
the user choose from a large number of candidates.

4.2.2 Evaluation on Generation
Table 2 and Table 3 present the comparison results on
Dist2/3/4 and End-to-End recall@1/10/50. Our model
demonstrates effective performance on the Redial dataset
and achieves the best results for most metrics, highlight-
ing its ability to ensure diverse generation. In comparison
to NTRD, our model performs similarly in the Dist-2
metric and outperforms NTRD in the end-to-end rec-
ommendation metrics, particularly in the recall@1 met-
ric, where it provides superior top-1 recommendations.
Significant gaps are observed between the accuracy of
recommendations generated by end-to-end methods and
recommendation modules in the end-to-end recommen-
dation metrics. For instance, the recommendation based
on the final produced response of the KGSF method
only achieves 0.9% in Recall@1, much lower than the
3.9% achieved by the recommendation module. This
discrepancy can be attributed to the susceptibility of

KGSF’s generation module to contextual interference and
its limited effectiveness in embedding recommendation
module results into dialogues. Even the relatively better-
performing NTRD method experiences a significant loss
of nearly 42% in the conversion between recommenda-
tion and generation. These results indicate the existing
models’ ineffectiveness in generating responses with ac-
curate recommendations for users. Additionally, we also
tested the performance of Chat-GPT in an end-to-end
recommendation model. Based on the setup by Wang
et al. [54], we used GPT 3.5 as our baseline model
and tested the metrics recall@1 and recall@10. While
Chat-GPT can generate very high-quality text and make
recommendations based on user requests, it does not in-
tegrate well with user preferences, showing a significant
performance gap on the redial dataset.

In contrast, our model excels in combining recom-
mendation and generation, offering greater availability
for end-to-end responses. By integrating user preference
features and item features into the final generated re-
sults, our model achieves a recall@1 score of 45.4%. This
finding suggests that the final responses do not require
an excessive number of items to align with users’ pref-
erences, thereby enhancing recommendation accuracy.

4.3 Discussions
In addition to the performance comparison of baseline
models, including Redial, KBRD, KGSF, NTRD, RID,
RevCore, and CRFR, we also explore several variant
models to demonstrate the importance of various com-
ponents of our model and its ability to address specific
problems. We discuss seven aspects of our experiments
as follows: (1) The ablation study on recommendation
module; (2) The impact of different methods in extracting
historical information; (3) The impact of the improved
structure on recommendation-to-generation loss; (4) The
discussion about recommendation turns; (5) The dis-
cussion about parameters in end-to-end loss; (6) The
impact of users’ historical information on the model;
(7) The discussion on user interest shift; (8) The case
study. By analyzing these aspects, we can gain a deeper
understanding of our model’s strengths and weaknesses
and further optimize its performance in recommendation
and generation tasks.

4.3.1 The Ablation Study on Recommendation Module
We discussed the impact of different components in
the recommendation module on model recommendation
effectiveness and end-to-end recommendation effective-
ness. We conducted ablation experiments using four
model variants: (1) without external knowledge graph,
(2) with only ConceptNet as our knowledge graph, (3)
with only DBpedia as our knowledge graph, and (4)
without attention mechanism. As the Table 4 shows, the
variant of model which lacks an attention mechanism
suffer significant performance losses in recommendation.
Without utilizing the attention mechanism to condense
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Fig. 3: Discussion on the impact of different methods in extracting historical information. The Rec. means the results
of different model variants on the recommendation module, and Gen. means the recommendation results for different
model variants in the final dialogue.

TABLE 4
The Ablation experiment in the recommendation

module and end-to-end recommendation. R means
Recall

Recommendation End-to-End

Variations R@1 R@10 R@50 R@1 R@10 R@50

No-KG 0.682 0.720 0.752 0.419 0.444 0.458
No-DB 0.730 0.766 0.793 0.452 0.467 0.487
No-Con 0.750 0.783 0.804 0.379 0.434 0.478
No-atten 0.083 0.197 0.325 0.016 0.087 0.243

PHCI 0.717 0.792 0.822 0.454 0.473 0.493

the vast information contained in the knowledge graph,
and instead directly incorporating the obtained embed-
dings into our user embedding, the effectiveness of
model recommendations will significantly decrease. On
the other hand, the introduction of knowledge graphs
has also enhanced the recommendation effectiveness of
the model. In the variants of models without using
knowledge graphs, both in terms of the efficiency of
the recommendation module and in the end-to-end rec-
ommendation results, the complete PHCI model out-
performed variants without knowledge graphs. Further-
more, even with just a single knowledge graph added, in
terms of Recall@1 metric, models with DBpedia and Con-
ceptNet outperformed the complete PCHI model. How-
ever, in PCHI, the integrating two knowledge graphs
brought more insights to the model, resulting in better
performance in recommendations for both top 10 and
top 50 scenarios.

4.3.2 The Impact of Different Methods in Extracting His-
torical Information

To demonstrate the impact of different methods of ex-
tracting user history information features on the model,

we perform experiments with variant models as follows:
1) W/o History Embedding: variant model without

considering the history embedding.
2) RNN: variant model using Recurrent neural net-

work in the model for history embedding.
3) Transformer: variant model using Transformer ar-

chitecture in the model for history embedding.
4) Item2Vec: our PHCI model uses Item2Vec for his-

tory embedding.
The performance of different factors is illustrated in

Fig.3. As observed, the model achieves better results
when incorporating historical interaction information.
Although the various model variants have different
effects, they all demonstrate significant improvements
compared to the model without history embedding. This
highlights the effectiveness of the history embedding
unit in learning users’ preference information and the
necessity of integrating users’ long-term interests with
their intentions expressed in the dialogue context. Ad-
ditionally, we notice that the transformer-based model
performs similarly to other models in the final results,
despite not performing well in the recommendation
module. This suggests that the transformer-based model
has potential for end-to-end recommendation. To further
understand the impact of historical information, we com-
pare the proportion of different interaction counts in the
dataset in Section 4.3.5.

4.3.3 The Impact of the Improved Structure on
Recommendation-to-Generation Loss

Upon analyzing the results of the comparison experi-
ments, it is evident that the baseline models experience
significant performance loss when comparing the rec-
ommendation module and end-to-end recommendation
results. This discrepancy can be attributed to various
factors; for instance, the recommendation module may
believe certain items should be recommended within a
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Fig. 4: Discussion on the impact of the improved struc-
ture on recommendation-to-generation loss, w/o infu-
sion means use end-to-end results.

sentence and propose a set of items for the generation
module. However, the generation module may decide to
generate a response without a recommendation item to
address the user’s previous statement. To demonstrate
the improvement in the generation module, we compare
the performance of the improved generation module
with a non-improved module. We refer to the model
variant that directly employs end-to-end generation re-
sults as the w/o infusion model. In contrast, the concept
involves outcomes derived from integrating templates of
the generation module with items from the recommen-
dation module. We have measured the recommendation
efficacy and the conversion loss present in the results of
both approaches.

The results are displayed in Fig.4. We can observe that
the improved model demonstrates better performance
when compared to the generation module without item
embedding and preference features. It is hypothesized
that the user preference feature and item feature can
enhance the model’s ability to predict the type of con-
versation to be generated, and aid the generation module
in generating sentences with item slots for recommenda-
tions. We also notice that, compared to the unimproved
model, the improved model exhibits smoother perfor-
mance in Recall metrics. This suggests that item embed-
ding and preference features can improve the accuracy
of the model for end-to-end recommendation results and
effectively reduce the size of the item candidate set. In
addition, we compare these two variant models with
baseline models and calculate the loss between their
recommendation module and the final result.

As depicted in Fig.5, the improved model demon-
strates the best performance among the baseline meth-
ods. We notice that the unimproved model has an 84.94%
accuracy loss in recommendation-to-generation, which
is higher than the baseline models. This indicates that
without integrating item features and preference features
into the generation module, the model cannot effectively

Fig. 5: R2G loss on different models, w/o infusion means
use end-to-end results.

convert good recommendation results into final results.
We can also observe that the performance of NTRD and
our model is better than KGSF, implying that models uti-
lizing a slot-filling approach exhibit better performance
in end-to-end recommendation results.

4.3.4 The Discussion about Recommendation Turns
In addition to high accuracy and diverse responses,
we aim for users to receive satisfactory replies with
fewer conversation turns. We designed a metric, the
Average Turns for Recommendation (ATR), to calculate
the average number of turns required to reach a final
recommendation:

ATR =
1

n

∑
i∈n

Ranki, (26)

where n represents the number of successful recommen-
dations, and Ranki denotes the turns that include the
correct recommendation in a conversation. A smaller
ATR indicates that users need fewer conversation turns
to obtain their desired item. Furthermore, we employ the
Mean Reciprocal Rank (MRR) to evaluate the model’s
speed:

MRR =
1

n

∑
i∈n

1

Ranki
, (27)

The results are displayed in Table 5. We observe that
the model incorporating user’s historical interaction in-
formation outperforms the one that relies solely on con-
text information. Moreover, we note that the baselines ex-
hibit poor performance in MRR, which can be attributed
to their weak Recall@1 when generating responses. This
finding suggests that models adopting previous interac-
tion data can effectively reduce the number of trial-and-
error rounds in a conversation.

4.3.5 The Discussion about Parameters in End-to-End
Loss

During end-to-end model training that combines the
recommendation and generation modules, we introduce
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TABLE 5
Eval on Recommendation Turns, ATR denotes average

turns required for final results.

Methods ATR MRR

KGSF 6.20 0.001
NTRD 5.80 0.003

PCHI(Ours) 5.24 0.182

a hyperparameter γ. The purpose of γ is to determine
the weights of the losses for both the recommendation
and generation modules during end-to-end training. We
conduct experiments to study the impacts of the hyper-
parameter γ, as shown in Table 6. We observe that the
model’s performance initially improves with increasing
γ, but starts to decline when γ exceeds 5. Since the
recommendation module has been pre-trained, a higher
γ positively influences the final results. However, al-
though the generation metrics improve as γ increases,
an excessively large γ can have negative effects on the
recommendation metrics.

TABLE 6
Discussion on the γ parameter

Eval on Dialogue Gen. Eval on end-to-end Rec.

Parameters PPL Dist2 Dist3 Dist4 R@1 R@10 R@50

γ=0.5 6.467 0.497 0.718 0.847 0.406 0.448 0.479
γ=1 6.854 0.417 0.611 0.733 0.382 0.421 0.453
γ=3 6.431 0.505 0.729 0.881 0.381 0.415 0.453
γ=5 6.340 0.574 0.863 1.053 0.454 0.473 0.493
γ=10 6.190 0.481 0.735 0.987 0.408 0.449 0.489

4.3.6 The Impact of User’s Historical Information on
Model

In order to demonstrate the impact of historical infor-
mation, we partition the dataset based on the number of
user-item interactions. For example, if a user mentions an
item only once in all their conversations, we label that
as 1 user-item interaction. The results shown in Table
7 indicate that less than half of the users have only
interacted with a particular movie once, 19% of users
have interacted with a movie more than 5 times, and
one user mentioned the same movie 64 times in all their
conversations. From a data perspective, it is feasible to
infer recommended items from movies users have his-
torically interacted with, as multiple interactions suggest
that users need recommendations for items similar to
those from their history.

To further examine the influence of historical informa-
tion on the model, we extracted users from the train-
ing set who had a history of interacting with specific
movies and observed their performance in the test set.
The results shown in Fig.6 reveal that as the number
of user interactions increases, the model’s performance
in terms of final recommendations improves. However,

TABLE 7
Statistics on the number of user interactions with

movies in Redial dataset

Numbers 1 2 3 4 5 6-10 10+

User count 346 133 41 45 24 101 37

Fig. 6: Discuss on the impact of user’s historical infor-
mation on model

when the number exceeds 10, the performance declines.
This phenomenon can be explained by the fact that when
a user mentions the same movie too many times, they
likely have already seen the movie and know all related
movies. In this case, recommendations similar to that
movie can no longer meet the user’s needs. This sug-
gests that the model is more effective at capturing user
preferences if a user mentions a movie more than five
times in the dataset. Therefore, when utilizing a user’s
historical information, selecting an appropriate number
of interactions as a prerequisite can better enhance the
model’s performance.

TABLE 8
Statistics on the occurrence of user interest shift in

Redial dataset

Number of Dialogue

User interest shift 196
No user interest shift 1146

Total 1342

4.3.7 Discussion on User Interest Shift
To further demonstrate our model’s effectiveness in ad-
dressing the user interest shift problem, we compare
its performance in the extraction test data with two
baselines, KGSF and NTRD. The results for Recall@1,
Recall@10, and Recall@50 are shown in Fig.7. We can
observe that none of the three methods experienced sig-
nificant performance loss in the presence of user interest
shift. Except for KSGF, which already performed poorly
in the end-to-end recommendation task, our method and
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Fig. 7: Performance of different models on user interest
transfer and no user interest transfer dataset, The upper
section is a subdataset of user interest shifts, while the
lower section is subdataset of no user interest shifts.

NTRD showed performance similar to that without user
interest shift. This could be attributed to the fact that
all methods are based on contextual information and
exhibit strong locality, primarily relying on information
from recent dialogues for recommendation. Therefore,
our method is effective in handling user interest shift
situation that frequently occurs in recommendation di-
alogues and provide new and precise recommendations
to users.

4.3.8 Case Study
We display an example of responses predicted by our
model and a human annotator for same dialogue in Fig.8.
In the first round interaction, our model replies user’s
greeting and guiding user to say their needs. Then the
user says he or she wants comedy movies like Blades
of Glory. Our model captures the intention of ”comedy
movies” and ”movies like Blades of Glory” and give the
recommendation, shaun of the dead. After finding that
the user is not satisfied with the movie, the model gives
a new recommendation item until the user is satisfied.
At the end of the conversation, our model is aware of the
end of conversation and generates a goodwill response
to the user.

5 CONCLUSION
In this paper, we propose a novel PCHI. Specifically, we
introduce the user’s historical interaction into traditional

Fig. 8: An example dialogue with responses generated
by PHCI and Human.

KG-enhanced CRS, by Item2Vec method and gate mech-
anism, which make the recommendation system more
accurate and faster. To integrate the response genera-
tion and the item recommendation, we design a new
fusion mechanism by incorporating the representation
of recommendation items with the linguistic information
given by the decoder. Extensive experiments on the
benchmark dataset ReDial show our approach signifi-
cantly outperforms the previous state-of-the-art methods
in the recommendation task, and the diversity of final
responses. In addition, we demonstrate the performance
of the model on issues such as reducing conversation
recommendation turns and shifting user interests. We
also designed experiments to demonstrate the impact of
different variants of the model on the recommendation
and generation performance. In future work, we will
look for better ways to integrate item information into
the generated dialogues to generate dialogues that con-
tain reasons for recommendations and characteristics of
recommended items.
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